Toán 8 Ôn tập chương 2: Phân thức đại số

Với bài học này, giúp các ôn tập chương 2 Phân thức đại số bao gồm tính chất của phân thức đại số, các phép tính phân thức đại số và biến đổi các biểu thức hữu tỉ.

Toán 8 Ôn tập chương 2: Phân thức đại số

1. Tóm tắt lý thuyết

1.1. Phân thức đại số

Định nghĩa

Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng \(\dfrac{A}{B}\) , trong đó \( A,B\) là những đa thức và \(B\) khác 0.

Hai phân thức bằng nhau:

 Với hai phân thức \(\dfrac{A}{B}\)  và  \(\dfrac{C}{D}\left( {B \ne 0,\,D \ne 0} \right)\) , ta nói \(\dfrac{A}{B} = \dfrac{C}{D}\)  nếu \(A.D = B.C\).

1.2. Tính chất cơ bản của phân thức đại số

+  \( \dfrac{A}{B} = \dfrac{{A.M}}{{B.M}}\) (\(M\) là một đa thức khác 0 )

\(\dfrac{A}{B} = \dfrac{{A:N}}{{B:N}}\)  (\(N\) là một nhân tử chung, \(N\) khác đa thức 0 )

Qui tắc đổi dấu:

+ Đổi dấu cả tử và mẫu của một phân thức thì ta được phân thức mới bằng phân thức đã cho:

\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)   

Ngoài ra, ta còn có một số quy tắc sau :

+ Đổi dấu tử số và đổi dấu phân thức:  \(\dfrac{A}{B} =  - \dfrac{{ - A}}{B}\)

+ Đổi dấu mẫu số và đổi dấu phân thức: \(\dfrac{A}{B} =  - \dfrac{A}{{ - B}}\)

+ Đổi dấu mẫu : \(\dfrac{A}{{ - B}} =  - \dfrac{A}{B}\)

1.3. Rút gọn phân thức đại số

- Cách biến đổi phân thức thành phân thức đơn giản hơn và bằng phân thức đã cho gọi là rút gọn phân thức.

- Muốn rút gọn một phân thức ta có thể làm như sau:

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung (nếu có).

1.4. Quy đồng mẫu thức

Phương pháp quy đồng mẫu thức nhiều phân thức

* Tìm mẫu chung

+ Phân tích phần hệ số thành thừa số nguyên tố và phần biến thành nhân tử

+ Mẫu chung bao gồm: phần hệ số là BCNN của các hệ số của mẫu và phần biến là tích giữa các nhân tử chung và riêng mỗi nhân tử lấy số mũ lớn nhất.

* Tìm nhân tử phụ mỗi phân thức: Lấy mẫu chung chia cho từng mẫu (đã phân tích thành nhân tử).

* Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

1.5. Cộng trừ hai phân thức

a. Cộng (trừ) hai phân thức cùng mẫu thức

Quy tắc: Muốn cộng (trừ) hai phân thức cùng mẫu thức ta cộng (trừ) các tử thức với nhau và giữ nguyên mẫu thức.

\(\dfrac{A}{B} + \dfrac{C}{B} = \dfrac{{A + C}}{B}\,\,\left( {B \ne 0} \right)\) ; \(\dfrac{A}{B} - \dfrac{C}{B} = \dfrac{{A - C}}{B};\,\left( {B \ne 0} \right)\)

b. Cộng (trừ) hai phân thức có mẫu thức khác nhau

Quy tắc: Muốn cộng (trừ) hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức các phân thức rồi cộng (trừ) các phân thức có cùng mẫu vừa tìm được.

c. Các tính chất của phép cộng và phép trừ các phân thức

+ Giao hoán: \(\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{C}{D} + \dfrac{A}{B}\)

+ Kết hợp: \(\left( {\dfrac{A}{B} + \dfrac{C}{D}} \right) + \dfrac{E}{F} = \dfrac{A}{B} + \left( {\dfrac{C}{D} + \dfrac{E}{F}} \right)\)

+ Đổi dấu: \( - \dfrac{A}{B} = \dfrac{{ - A}}{B} = \dfrac{A}{{ - B}} ; - \dfrac{{ - A}}{B} = \dfrac{A}{B}\)

1.6. Nhân chia hai phân thức

a) Nhân hai phân thức

Quy tắc: Muốn nhân hai phân thức , ta nhân tử thức với nhau, mẫu thức với nhau.

\(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{{A.C}}{{B.D}}\)

Tính chất phép nhân hai phân thức

+ Giao hoán: \(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{C}{D}.\dfrac{A}{B}\)

+ Kết hợp: \(\left( {\dfrac{A}{B}.\dfrac{C}{D}} \right).\dfrac{E}{F} = \dfrac{A}{B}.\left( {\dfrac{C}{D}.\dfrac{E}{F}} \right)\)

+ Phân phối đối với phép cộng: \(\dfrac{A}{B}.\left( {\dfrac{C}{D} + \dfrac{E}{F}} \right) = \dfrac{A}{B}.\dfrac{C}{D} + \dfrac{A}{B}.\dfrac{E}{F}\)

b) Chia hai phân thức

* Phân thức nghịch đảo

Hai phân thức gọi là nghịch đảo của nhau nếu tích của nó bằng 1 .

Phân thức nghịch đảo của phân thức \(\dfrac{A}{B}\)  là \(\dfrac{B}{A}\)  với \(A,\,B \ne 0\)

* Phép chia hai phân thức

Quy tắc: Muốn chia phân thức \(\dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\left( {\dfrac{C}{D} \ne 0} \right)\) , ta nhân \(\dfrac{A}{B}\) với phân thức nghịch đảo của \(\dfrac{C}{D}\) .

\(\dfrac{A}{B}:\dfrac{C}{D} = \dfrac{A}{B}.\dfrac{D}{C};\,\,\left( {\dfrac{C}{D} \ne 0} \right)\)

1.7. Biến đổi các biểu thức hữu tỉ

Ta sử dụng các quy tắc cộng, trừ, nhân, chia các phân thức để biến đổi một biểu thức hữu tỉ thành phân thức.

Để tính giá trị của phân thức , ta thực hiện các bước sau:

  • Bước 1: Tìm điều kiện xác định của phân thức
  • Bước 2: Thay giá trị của biến (thỏa mãn điều kiện) vào phân thức rồi tính

2. Bài tập minh hoạ

2.1. Bài tập 1

Chứng tỏ mỗi cặp phân thức sau bằng nhau:

a) \(\dfrac{3}{{2x - 3}}\) và \(\dfrac{{3x + 6}}{{2{x^2} + x - 6}}\);

b) \(\dfrac{2}{{x + 4}}\) và \(\dfrac{{2{x^2} + 6x}}{{{x^3} + 7{x^2} + 12x}}\).

Hướng dẫn giải

a) 

\(\eqalign{
& {{3x + 6} \over {2{x^2} + x - 6}} \cr 
& = {{3\left( {x + 2} \right)} \over {2{x^2} + 4x - 3x - 6}} \cr 
& = {{3\left( {x + 2} \right)} \over {2x\left( {x + 2} \right) - 3\left( {x + 2} \right)}} \cr 
& = {{3\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {2x - 3} \right)}} = {3 \over {2x - 3}} \cr} \)

Vậy \(\dfrac{3}{{2x - 3}}=\dfrac{{3x + 6}}{{2{x^2} + x - 6}}\)

b) 

\(\eqalign{
& {{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}} \cr 
& = {{2x\left( {x + 3} \right)} \over {x\left( {{x^2} + 7x + 12} \right)}} \cr & = {{2\left( {x + 3} \right)} \over { {{x^2} + 7x + 12} }} \cr 
& = {{2\left( {x + 3} \right)} \over {{x^2} + 3x + 4x + 12}} \cr 
& = {{2\left( {x + 3} \right)} \over {x\left( {x + 3} \right) + 4\left( {x + 3} \right)}} \cr 
& = {{2\left( {x + 3} \right)} \over {\left( {x + 3} \right)\left( {x + 4} \right)}} = {2 \over {x + 4}} \cr} \)

Vậy \(\dfrac{2}{{x + 4}}=\dfrac{{2{x^2} + 6x}}{{{x^3} + 7{x^2} + 12x}}\)

2.2. Bài tập 2

Thực hiện các phép tính sau:

a) \(\eqalign{
& \,\,\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}} \cr} \)

b) \(\eqalign{
& \,\,\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right) \cr} \)

Hướng dẫn giải

a) 

\(\eqalign{
& \,\,\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}} \cr &=\left( {{{(2x + 1)^2} \over {(2x - 1)(2x+1)}} - {{(2x - 1)^2} \over {(2x + 1)(2x-1)}}} \right):{{4x} \over {10x - 5}} \cr 
& = {{{{\left( {2x + 1} \right)}^2} - {{\left( {2x - 1} \right)}^2}} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{10x - 5} \over {4x}} \cr 
& = {{4{x^2} + 4x + 1 - 4{x^2} + 4x - 1} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{5\left( {2x - 1} \right)} \over {4x}} \cr & = {{8x} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{5\left( {2x - 1} \right)} \over {4x}} \cr 
& = {{8x.5\left( {2x - 1} \right)} \over {\left( {2x - 1} \right)\left( {2x + 1} \right).4x}} = {{10} \over {2x + 1}} \cr} \)

b) 

\(\eqalign{
& \,\,\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right) \cr 
& = \left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + {{{x^2}} \over x} - {{2x} \over x}} \right) \cr 
& = \left( {{1 \over {x\left( {x + 1} \right)}} + {{x - 2} \over {x + 1}}} \right):{{1 + {x^2} - 2x} \over x} \cr & = \left( {{1 \over {x\left( {x + 1} \right)}} + {{x.(x - 2)} \over {x.(x + 1)}}} \right):{{{x^2} - 2x+1} \over x} \cr 
& = {{1 + x\left( {x - 2} \right)} \over {x\left( {x + 1} \right)}}.{x \over {{x^2} - 2x + 1}} \cr & = {{x^2-2x+1} \over {x\left( {x + 1} \right)}}.{x \over {{x^2} - 2x + 1}} \cr 
& = {{\left( {{x^2} - 2x + 1} \right)x} \over {x\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)}} = {1 \over {x + 1}} \cr} \)

2.3. Bài tập 3

Cho biểu thức 

\(\left( {\dfrac{{x + 1}}{{2x - 2}} + \dfrac{3}{{{x^2} - 1}} - \dfrac{{x + 3}}{{2x + 2}}} \right).\dfrac{{4{x^2} - 4}}{5}\)

a) Hãy tìm điều kiện của \(x\) để giá trị của biểu thức được xác định.

b) Chứng minh rằng khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến \(x\).

Hướng dẫn giải

a) 

Ta xét các mẫu thức:

+) \(2x - 2 \ne 0\) \(\Rightarrow 2x  \ne 2\) \(\Rightarrow x \ne 1\).

+) \({x^2} - 1 \ne 0\) \(\Rightarrow \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\)

\(\Rightarrow x - 1 \ne 0\) và \( x + 1 \ne 0\)

\(\Rightarrow x \ne 1\) và \( x \ne  - 1\).

+) \(2x + 2 = 2\left( {x + 1} \right) \ne 0\) \(\Rightarrow x + 1 \ne 0\)\(\Rightarrow x \ne  - 1\).

Do đó điều kiện để giá trị của biểu thức được xác định là \(x \ne  - 1,\;x \ne 1\).

b) 

\(\eqalign{
& \left( {{{x + 1} \over {2x - 2}} + {3 \over {{x^2} - 1}} - {{x + 3} \over {2x + 2}}} \right).{{4{x^2} - 4} \over 5} \cr 
& = \left[ {{{x + 1} \over {2\left( {x - 1} \right)}} + {3 \over {\left( {x - 1} \right)\left( {x + 1} \right)}} - {{x + 3} \over {2\left( {x + 1} \right)}}} \right].{{4({x^2} - 1)} \over 5} \cr & = \left[ {{{(x + 1)^2} \over {2\left( {x - 1} \right)(x+1)}} + {3.2 \over {2.\left( {x - 1} \right)\left( {x + 1} \right)}} - {{(x + 3)(x-1)} \over {2\left( {x + 1} \right)(x-1)}}} \right].{{4({x^2} - 1)} \over 5} \cr 
& = {{{{\left( {x + 1} \right)}^2} + 3.2 - \left( {x + 3} \right)\left( {x - 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr 
& = {{{x^2} + 2x + 1 + 6 - \left( {{x^2} - x + 3x - 3} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr 
& = {{{x^2} + 2x + 1 + 6 - {x^2} + x - 3x + 3} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr 
& = {{10} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr 
& = {{10.4.\left( {x - 1} \right)\left( {x + 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right).5}} = 4 \cr} \)

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến \(x\).

3. Luyện tập 

3.1. Bài tập tự luận

Câu 1: Thực hiện các phép tính:

a) \(\displaystyle \left( {{9 \over {{x^3} - 9x}} + {1 \over {x + 3}}} \right)\)\(:\displaystyle \left( {{{x - 3} \over {{x^2} + 3x}} - {x \over {3x + 9}}} \right)\)

b) \(\displaystyle \left( {{2 \over {x - 2}} - {2 \over {x + 2}}} \right).{{{x^2} + 4x + 4} \over 8}\)

c) \(\displaystyle \left( {{{3x} \over {1 - 3x}} + {{2x} \over {3x + 1}}} \right)\)\(:\displaystyle {{6{x^2} + 10x} \over {1 - 6x + 9{x^2}}}\)

d) \(\displaystyle \left( {{x \over {{x^2} - 25}} - {{x - 5} \over {{x^2} + 5x}}} \right):{{2x - 5} \over {{x^2} + 5x}}\)\(\displaystyle  + {x \over {5 - x}}\)

Câu 2: Chứng minh đẳng thức :

a) \(\displaystyle \left( {{{{x^2} - 2x} \over {2{x^2} + 8}} - {{2{x^2}} \over {8 - 4x + 2{x^2} - {x^3}}}} \right)\)\(.\displaystyle \left( {1 - {1 \over x} - {2 \over {{x^2}}}} \right) = {{x + 1} \over {2x}}\)

b) \(\displaystyle \left[ {{2 \over {3x}} - {2 \over {x + 1}}.\left( {{{x + 1} \over {3x}} - x - 1} \right)} \right]\)\(:\displaystyle {{x - 1} \over x} = {{2x} \over {x - 1}}\) 

Câu 3: Biến đổi các biểu thức hữu tỉ thành phân thức :

a) \(\displaystyle {\displaystyle {{x \over {x - 1}} - {{x + 1} \over x}} \over {\displaystyle {x \over {x + 1}} - {{x - 1} \over x}}}\)

b) \(\displaystyle {\displaystyle {{5 \over 4} - {5 \over {x + 1}}} \over {\displaystyle {{9 - {x^2}} \over {{x^2} + 2x + 1}}}}\)

Câu 4: Đối với mỗi biểu thức sau, hãy tìm điều kiện của \(x\) để giá trị của biểu thức được xác định:

a) \(\displaystyle {{2x - 3} \over {\displaystyle {{x - 1} \over {x + 2}}}}\)

b) \(\displaystyle {\displaystyle {{{2{x^2} + 1} \over x}} \over {x - 1}}\)

c) \(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} - 10x + 25} \over x}}}\)

3.2. Bài tập tắc nghiệm

Câu 1: Nếu \(x=\frac{a}{b}, a \neq b\) và \(b \neq 0\) thế thì \(\frac{a+b}{a-b}=\)

A. \(\frac{x}{x+1}\)

B. \(\frac{x+1}{x-1}\)

C. 1

D. \(x-\frac{1}{x}\)

Câu 2: Cho \(x^{2}-4x+1=0\), khi đó giá trị của biểu thức \(\frac{x^{4}+x^{2}+1}{x^{2}}\) bằng: 

A. -1

B. 1

C. 2

D. -3

Câu 3: Tổng của các số nguyên x để cho phân thức \(\frac{x^{2}+3x+2}{x^{2}+x-2}\) có giá trị nguyên là:

A. 0

B. -2

C. 2

D. -3

Câu 4: Chọn câu trả lời đúng 

Giá trị của phân thức \(\frac{3x-1}{x^{2}-2}\) được xác định với giá trị của x là: 

A. \(x \neq 2\)

B. \(x \neq \pm 2\)

C. \(x \neq \pm \frac{1}{2}\)

D. \(x \neq \pm \sqrt{2}\)

Câu 5: Chọn câu trả lời đúng 

Biết \(\frac{3x^{4}-6x^{3}+3x^{2}}{x^{2}-2x+1}=12\). Giá trị của x là:

A. \(x = \pm 2\)

B. \(x \neq 1\)

C. \(x \neq \pm 2\)

D. \(x \neq \pm \frac{1}{2}\)

4. Kết luận

Qua bài học này, các em nắm được một số nội dung chính như sau:

  • Hiểu rõ khái niệm phân thức đại số.
  • Có khái niệm hai phân thức bằng nhau để nắm vững tính chất cơ bản của phân thức.
  • Có kĩ năng nhận biết hai phân thức bằng nhau.
Ngày:12/08/2020 Chia sẻ bởi:Nguyễn Minh Duy

CÓ THỂ BẠN QUAN TÂM