Bài 1: Tích phân bất định - Nguyên hàm, Tích phân bất định

Nội dung bài giảng Bài 1: Tích phân bất định sau đây sẽ giúp các bạn tìm hiểu về nguyên hàm - Tích phân bất định, tính chất của tích phân bất định, các công thức tích phân bất định cơ bản, phương pháp tính tích phân bất định,...Mời bạn đọc cùng eLib tham khảo.

Bài 1: Tích phân bất định - Nguyên hàm, Tích phân bất định

Bài 1: Tích phân bất định - Nguyên hàm, Tích phân bất định

1. Nguyên hàm - Tích phân bất định:

Định nghĩa

Cho các hàm số f, F xác định trên [a,b].

F được gọi là một nguyên hàm của f trong (a,b) nếu

F(x)=f(x),x(a,b)

F gọi là nguyên hàm của f trên [a,b] nếu:

F(x)=f(x),x(a,b)

và F(a+)=f(a),F(b)=f(b)

Ví dụ:

  • - cosx là nguyên hàm của sinx vì (-cosx)' = sinx. - cosx + 7 cũng là nguyên hàm của sinx .  x33,x335,x33C là những nguyên hàm của x2 vì:

(x33)=(x335)=(x33C)=x2

Định lý: Nếu hàm số f liên tục trên [a, b] thì f có nguyên hàm trên [a, b].

Định lý: giả sử F là nguyên hàm của f trong (a, b). Khi đó ta có:

i) F + C (C là hằng số) cũng là một nguyên hàm của f trong (a, b)

ii) Nếu G cũng là một nguyên hàm của f trong (a, b) thì tồn tại hằng số C sao cho 

G(x)=F(x)+Cx(a,b)

Chứng minh:

i) (F(x)+C)=F(x)=f(x),x(a,b)

⇒ F + C là một nguyên hàm của f trong (a,b)

ii) [G(x)F(x)]=G(x)F(x)=f(x)f(x)=0,x<(a,b)

CR:G(x)F(x)=C,x(a,b)

G(x)=F(x)+C,x(a,b)

Ghi chú:

Định lý trên vẫn đúng nếu thay (a,b) bằng [a,b] Nếu f có một nguyên hàm thì f có vô số nguyên hàm và hai nguyên hàm bất kỳ của cùng một hàm số thì sai khác nhau một hàng số.

Định nghĩa:

Tập hợp tất cả những nguyên hàm của f trên [a,b] được gọi là tích phân bất định của f trên [a, b], ký hiệu: f(x)dx .Nếu F là một nguyên hàm của f thì

f(x)dx={F(x)+C/CR}

Viết gọn: f(x)dx=F(x)+C

2. Tính chất của tích phân bất định

Cho f, g là các hàm số có nguyên hàm trong (a,b). Khi đó:

i)ddxf(x)dx=(f(x)dx)=f(x)

ii)df(x)dx=f(x)dx

iii)(f(x)±g(x))dx=f(x)dx±g(x)dx

iv)kf(x)dx=kf(x)dx,kR

Hệ quả: ni=1kifi(x)dx=ni=1kifi(x)dx

v) Nếu F(x)=f(x) thì 

F(x)dx=dF(x)=F(x)+C=f(x)dx

và f(y)dy=F(y)+C,f(t)dt=F(t)+C,....

Chứng minh: Dành cho độc giả (suy ra từ tính chất đạo hàm).

3. Các công thức tích phân bất định cơ bản

1.Odx=C

2.adx=ax+C

3.xndx=xn+1n+1+C(n1)

4.dxx=ln|x|+C

vì (ln|x|+C)={(ln)(x>0)[ln(x)](x<0)={1x(x>0)1x=1x(x<0)=1x,x0

5.exdx=ex+C

6.axdx=axlna+C

7.sinxdx=cosx+C

8.cosxdx=sinx+C

9.dxcos2x=(1+tg2x)dx=tgx+C

10.dxsin2x=(1+cotg2x)dx=cotgx+C

11.dx1+x2=arcsinx+C

12.dxxn=xndx=xn+1n+1+C=1(n1)xn1+C(n1)

13.dxxnxndx=xn+1n+1+C=1(n1)xn1+C(n1)

dx2x=x+C

14.tgxdx=sinxcosxdx=d(cosx)cosx=ln|cosx|+C

15.cotgxdx=cosxsinxdx=d(sinx)sinx=ln|sinx|+C

16.dxa2x2=arcsinx|a|+C

17.dxa2x2=1Aarctgxa+C

18.dxx2+b=ln|x+x2+b|+C

19.dxx2a2=12aln|xax+a|+C(a0)

20.dx(xa)(xb)=1baln|xbxa|+C(ab)

21.a2x2dx=x2a2x2+a22arcsinx|a|+C(a0)

22.a2+x2dx=x2a2+x2+a22ln|x+a2+x2|+C

4. Ví dụ

a.x45x3x2+3x+7x2+1dx

=(x25x2+8x+9x2+1)dx=x335x222x+(8x+9x2+1)dx

=x335x222x+4.2xdxx2+1+9dxx2+1

=x335x222x+4d(x2+1)x2+1+9arctgx

=x335x222x+4ln(x2+1)+9arctgx+C

b.(x2+x)xxdx=(x2+x)x12x14dx

=(x(2+34)+x(2+34))dx=(x114+x74)dx

=415x154+411x114+C

c.e3x7xdx=(e37)xdx=(e37)xln(e37)=e3x7x3+ln7+C

d.dxx+a=d(x+a)x+a=ln|x+a|+C

e.sinxdxcos3x=tgxdxcos2x=tgxd(tgx)=tg2x2+C

f.dx(xx2+1)2=(x+x2+1)[x2(x2+1)]2dx=(x2+2xx2+1+x2+1)dx

=2x33+x+u12du=2x33+xu12+112+1+C=23x3+x+23(x2+1)32+C

g.dxx2a2=dx(xa)(x+a)=12a(x+a)(xa)(xa)(x+a)dx

=12a(1xa1x+a)dx=12a[ln|xa|][ln|x+a|]+C

=12aln|xax+a|+C(a0)

h.tg2xdx=(tg2x+11)dx=tgxx+C

i.tg5xdx=(tg5x+tg3xtg3x+tgxtgx)dx

=tg3x(tg2x+1)dxtgx(tg2x+1)dx+tgxdx=tg4x4tg2x2ln|cosx|+C

5. Phương pháp tính tích phân bất định

5.1 Phương pháp đổi biến

a. Giả sử f là hàm số có nguyên hàm trên miền D.

Đặt x=φ(t), với φ là hàm khả vi đơn điệu đối với biến t và miền giá trị của φ(t) chứa trong D. Khi đó;

f(x)dx=f(φ(t))φ(t)dt

Ví dụ:

1) I=sin3x3x2dx.

Đặt x=t3dx=3t2dt,3x2=t2,3x=t

I=(sint)3t2dtt2=3sintdt=3cost+C=3cos3x+C

2) I=a2x2dx(a>0,a2x20axa)

Đặt x=asint,π2tπ2dx=acostdtvà sint=xa

I=a2x2dx=a2a2sin2tacostdt

=acos2tacostdt=a2|cost|costdt=a2cos2tdt

=a2(1+cos2t)2dt=a22t+a24sin2t+C

=a22arcsinxa+a242sintcost+C=a22arcsinxa+a22.xa1x2a2+C

=a22arcsinxa+x2a2x2+C

b. Đặt u = h(x) với h khả vi liên tục, ta có:

g(h(x))h(x)dx=g(u)du

5.2 Phương pháp tích phân từng phần

Cho u = u(x), v = v(x) là các hàm khả vi và có đạo hàm liên tục. Khi đó udv=uvvdu

Chứng minh:

Ta có: d(uv)=vdu+udvd(uv)=udv+vdu

Suy ra udv=uvvdu

Thông thường để tính f(x)dx, ta phân tích: f(x)dx=udv sao cho tính được các tích phân vdu và dv

Nhận xét:

  • Dạng p(x)[excosxsinx]dx. Đặt u = p(x) và dv=[excosxsinx]dx Dạng p(x)[lnxarctgxarcsinx]dx. Đặt u=[lnxarctgxarcsinx],dv=p(x)dx

Ví dụ

a) x2exdx. Đặt u=x2du=2xdx

dv=exdx, chọn v=ex

Do đó: x2exdx=uvvdu=x2ex2xexdx

Đặt u=2xdu=2dx;dv=exdxchọn v=ex

x2exdx=x2ex[2xex2exdx]=x2ex2xex+2ex+C

Tổng quát:

xnexdx=xnexnxn1ex+n(n1)xn2ex+...+(1)n1n!xex+(1)nn!ex+C

b) I=x3sinxdx

Đặt u=x3du=3x2dx.dv=sinxdxchọn v = - cosx

I=x3cosx+3x2cosxdx

=x3cosx+3x2sin6xsinxdx

=x3cosx+3x2sin+6xcosx6cosxdx

=x3cosx+3x2sin+6xcosx6sinx+C

c) I=xarctgxdx

Đặt u=arctgxdu=dx1+x2

dv=xdx,v=12(x2+1)

I=12(x2+1)arctgx12(x2+1)11+x2dx=12(x2+1)arctgxx2+C

d) a2x2dx(a>0)

Đặt u=a2x2du=2xdx2a2x2=xdxa2x2

I=xa2x2x2dxa2x2=xa2x2x2+a2a2a2x2dx

2I=xa2x2+a2dxa2x2

I=x2a2x2+a22arcsinxa+C

Tương tự: J=a2+x2dx

Đặt u=a2+x2du=xdxa2+x2,dv=dxchọn v = x

Ta có: 

J=xa2+x2x2dxa2+x2=xa2+x2x2+a2a2a2+x2dx

2J=xa2+x2+a2dxa2+x2

J=12xa2+x2+a22dxa2+x2

=x2xa2+x2+a22ln(x+a2+x2)+C

Trên đây là nội dung bài giảng Bài 1: Tích phân bất định - Nguyên hàm, Tích phân bất định được eLib tổng hợp lại nhằm giúp các bạn sinh viên có thêm tư liệu tham khảo. Hy vọng đây sẽ là tư liệu giúp các bạn nắm bắt nội dung bài học dễ dàng hơn.

Ngày:25/11/2020 Chia sẻ bởi:Tuyết

CÓ THỂ BẠN QUAN TÂM