Giải bài tập SGK Toán 4 Bài: Luyện tập trang 137

Phần hướng dẫn giải bài tập  Luyện tập trang 137 sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các giải bài tập từ SGK Toán 4 Cơ bản và Nâng cao.

Giải bài tập SGK Toán 4 Bài:  Luyện tập trang 137

1. Giải bài 1 trang 137 SGK Toán 4

Tính rồi rút gọn:

a) \(\displaystyle {2 \over 7}:{4 \over 5};\)                                 b) \( \displaystyle {3 \over 8}:{9 \over 4};\)

c) \(\displaystyle {8 \over {21}}:{4 \over 7};\)                               d) \(\displaystyle {5 \over 8}:{{15} \over 8}\)

Phương pháp giải

Muốn chia hai phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.

Hướng dẫn giải

a) \( \displaystyle{2 \over 7}:{4 \over 5} = {2 \over 7} \times {5 \over 4} = {{10} \over {28}} = {{10:2} \over {28:2}} \)\( \displaystyle= {5 \over {14}};\)

Hoặc : \( \displaystyle{2 \over 7}:{4 \over 5} = {2 \over 7} \times {5 \over 4} = {{2 \times 5 } \over {7 \times 4 }} \)\( \displaystyle= {{2\times  5} \over {7 \times  2 \times  2}} = {5 \over {14}};\)

b) \( \displaystyle{3 \over 8}:{9 \over 4} = {3 \over 8} \times {4 \over 9} = {{12} \over {72}} = {{12:12} \over {72:12}}\)\( \displaystyle = {1 \over 6};\)

Hoặc : \( \displaystyle{3 \over 8}:{9 \over 4} = {3 \over 8} \times {4 \over 9} = {{3\times 4 } \over {8 \times  9}} \)\( \displaystyle = {{3 \times  4} \over {4 \times  2 \times  3 \times  3}} = {1 \over 6};\)

c) \( \displaystyle{8 \over {21}}:{4 \over 7} = {8 \over {21}} \times {7 \over 4} = {{56} \over {84}} \) \(\displaystyle= {{56:28} \over {84:28}}  = {2 \over 3};\)

Hoặc : \( \displaystyle{8 \over {21}}:{4 \over 7} = {8 \over {21}} \times {7 \over 4} = {{8\times  7} \over {21 \times  4}} \) \(\displaystyle= {{2 \times  4 \times  7} \over {3 \times  7 \times  4}}  = {2 \over 3};\)

d) \( \displaystyle{5 \over 8}:{{15} \over 8} = {5 \over 8} \times {8 \over {15}} = {{40} \over {120}} \) \(\displaystyle = {{40:40} \over {120:40}}  = {1 \over 3}.\)

Hoặc :  \( \displaystyle{5 \over 8}:{{15} \over 8} = {5 \over 8} \times {8 \over {15}} = {{5 \times  8} \over {8 \times  15}} \) \(\displaystyle = {{5 \times 8} \over {8 \times  5 \times  3}}  = {1 \over 3}.\)

2. Giải bài 2 trang 137 SGK Toán 4

Tính (theo mẫu):

Mẫu: \( \displaystyle 2:{3 \over 4} = {2 \over 1} : { 3 \over 4} = { 2\over 1} \times {4 \over 3 }= {8 \over 3}\)

Ta có thể viết gọn như sau: \( \displaystyle 2:{3 \over 4} = {{2 \times 4} \over 3} = {{8} \over 3}\)

a) \( \displaystyle3:{5 \over 7};\)                              b) \( \displaystyle4:{1 \over 3};\)                             c) \( \displaystyle5:{1 \over 6}.\)

Phương pháp giải

 Để chia số tự nhiên cho phân số ta có thể viết số tự nhiên dưới dạng phân số có mẫu số là \(1\), sau đó thực hiện phép chia hai phân số như thông thường; hoặc ta viết gọn lại tương tự như ở ví dụ mẫu.

Hướng dẫn giải

\( \displaystyle\eqalign{
& a)\,\,3:{5 \over 7} = {{3 \times 7} \over 5} = {{21} \over 5}; \cr 
& b)\,\,4:{1 \over 3} = {{4 \times 3} \over 1} = 12; \cr 
& c)\,\,5:{1 \over 6} = {{5 \times 6} \over 1} = 30. \cr} \)

3. Giải bài 3 trang 137 SGK Toán 4

Tính bằng hai cách:

\( \displaystyle a)\,\,\left( {{1 \over 3} + {1 \over 5}} \right) \times {1 \over 2}; \)                                \( \displaystyle  b)\,\,\left( {{1 \over 3} - {1 \over 5}} \right) \times {1 \over 2}. \)

Phương pháp giải

Cách 1: biểu thức có dấu ngoặc thì ta tính trong ngoặc trước, ngoài ngoặc sau.

Cách 2: Áp dụng công thức nhân một tổng hoặc một hiệu với một số:

   \((a+b)\times c = a \times c + b \times c\)  ;                   \((a-b)\times c = a \times c - b \times c\)

Hướng dẫn giải

a) Cách 1: 

\( \displaystyle\,\,\left( {{1 \over 3} + {1 \over 5}} \right) \times {1 \over 2} = \left( {{5 \over {15}} + {3 \over {15}}} \right) \times {1 \over 2} \)

\( \displaystyle= {8 \over {15}} \times {1 \over 2} = {{8 \times 1} \over {15 \times 2}} = {8 \over {30}}= {4 \over {15}};\)

Cách 2:

\( \displaystyle\,\,\left( {{1 \over 3} + {1 \over 5}} \right) \times {1 \over 2} = {1 \over 3} \times {1 \over 2} + {1 \over 5} \times {1 \over 2} \)

\( \displaystyle= {1 \over 6} + {1 \over {10}} = {{10} \over {60}} + {6 \over {60}} = {{16} \over {60}} = {4 \over {15}}\)

b) Cách 1:

\( \displaystyle\,\left( {{1 \over 3} - {1 \over 5}} \right) \times {1 \over 2} = \left( {{5 \over {15}} - {3 \over {15}}} \right) \times {1 \over 2} \)

\( \displaystyle= {2 \over {15}} \times {1 \over 2} = {{2 \times 1} \over {15 \times 2}} = {2 \over {30}}= {1 \over {15}}\)

Cách 2:

\( \displaystyle\left( {{1 \over 3} - {1 \over 5}} \right) \times {1 \over 2} = {1 \over 3} \times {1 \over 2} - {1 \over 5} \times {1 \over 2}\)

\( \displaystyle= {1 \over 6} - {1 \over {10}}\)\( \displaystyle= {{10} \over {60}} - {6 \over {60}}\)\( \displaystyle=  {4 \over {60}}  = {1 \over {15}}\)

4. Giải bài 4 trang 137 SGK Toán 4

Cho các phân số \( \displaystyle{1 \over 2}\,;\;{1 \over 3}\,;\;{1 \over 4}\,;\;{1 \over 6}\). Hỏi mỗi phân số đó gấp mấy lần \( \displaystyle{1 \over {12}}\)?

Mẫu: \( \displaystyle{1 \over 2}:{1 \over {12}} = {1 \over 2} \times {{12} \over 1} = {{12} \over 2} = 6\)

Vậy: \( \displaystyle{1 \over 2}\) gấp 6 lần \( \displaystyle{1 \over {12}}\).

Phương pháp giải

Thực hiện phép chia hai phân số để tìm thương của hai phân số đó.

Hướng dẫn giải

+) \( \displaystyle{1 \over 3}:{1 \over {12}} = {1 \over 3} \times {{12} \over 1} = {{12} \over 3} = 4\)

Vậy: \( \displaystyle{1 \over 3}\) gấp \(4\) lần \( \displaystyle{1 \over {12}}\).

+) \( \displaystyle{1 \over 4}:{1 \over {12}} = {1 \over 4} \times {{12} \over 1} = {{12} \over 4} = 3\)

Vậy: \( \displaystyle{1 \over 4}\) gấp \(3\) lần \( \displaystyle{1 \over {12}} \).

+) \( \displaystyle{1 \over 6}:{1 \over {12}} = {1 \over 6} \times {{12} \over 1} = {{12} \over 6} = 2\)

Vậy: \( \displaystyle{1 \over 6}\) gấp \(2\) lần \( \displaystyle{1 \over {12}}\).

Ngày:10/08/2020 Chia sẻ bởi:Denni

CÓ THỂ BẠN QUAN TÂM