Toán 5 Chương 1 Bài: Ôn tập Khái niệm về phân số

Để giúp các em ôn tập Ôn tập Khái niệm về phân số, eLib mời các em tham khảo bài học dưới đây. Hy vọng qua bài học này sẽ giúp các em ôn tập thật tốt bài Ôn tập: Khái niệm về phân số

Toán 5 Chương 1 Bài: Ôn tập Khái niệm về phân số

1. Tóm tắt lý thuyết

Viết: \(\frac{2}{3}\)

Đọc: hai phần ba

Viết: \(\frac{5}{10}\)

Đọc: năm phần mười

Viết: \(\frac{3}{4}\)

Đọc: ba phần tư

Viết: \(\frac{40}{100}\)

Đọc: bốn mươi phần một trăm, hay bốn mươi phần trăm.

\(\frac{2}{3}\); \(\frac{5}{10}\); \(\frac{3}{4}\); \(\frac{40}{100}\) là các phân số.

Chú ý:

1) Có thể dùng phân số để ghi kết quả của phép chia một số tự nhiên cho một số tự nhiên khác 0. Phân số đó cũng được là thương của phép chia đã cho.

Ví dụ: 1: \(3 = \frac{1}{3}\); \(4: 10 =\frac{4}{10}\); \(9: 2 = \frac{9}{2}\); ...

2) Mọi số tự nhiên đều có thể viết thành phân số có mẫu số là 1.

Ví dụ: \(5 = \frac {5}{1}\); \(12 = \frac {12}{1}\); \(2001 = \frac {2001}{1}\); ...

3) Số 1 có thể viết thành phân số có tử số và mẫu số bằng nhau và khác 0.

Ví dụ: \(1 = \frac {9}{9}\); \(1 = \frac {18}{18}\); \(1 = \frac {100}{100}\); ...

4) Số 0 có thể viết thành phân số có tử số là 0 và mẫu số khấc 0.

Ví dụ: \(0 = \frac {0}{7}\); \(0 = \frac {0}{19}\); \(0= \frac {0}{125}\); ...

2. Bài tập minh họa

Câu 1: Viết các thương sau đây dưới dạng phân số:

25 : 3;        7 : 9;           125 : 13;            

181 : 47;            35 : 29

Hướng dẫn giải

Thương của phép chia số tự nhiên cho số tự nhiên khác 0 có thể viết thành một phân số, tử số là số bị chi và mẫu số là số chia.

\(\frac{{25}}{{13}}\);                \(\frac{7}{9}\);                  \(\frac{{125}}{{13}}\);     

\(\frac{{181}}{{47}}\);              \(\frac{{35}}{{29}}\)

Câu 2: Viết các số tự nhiên sau đây dưới dạng phân số có mẫu số là 1:

35;             1241;        13 525;               0;                48 174

Hướng dẫn giải

Mọi số tự nhiên đều có thể viết thành một phân số có tử số là số tự nhiên đã cho và mẫu số là 1.

 \(\frac{{35}}{1}\);           \(\frac{{1241}}{1}\);       \(\frac{{13525}}{1}\);         

\(\frac{0}{1}\);        \(\frac{{48174}}{1}\)     

Câu 3:

a. Nếu số bị chia là số 0, số chia theo thứ tự là 102; 205; 361; 408; 1245 thì thương theo thứ tự bằng bao nhiêu?

b. Số 1 có thể xem là thương của những số nào?

Hướng dẫn giải

a. Số 0 chia cho mọi số tự nhiên khác 0 đều bằng 0 nên thương theo thứ tự bằng:

\(\frac{0}{{102}} = 0;\)   \(\frac{0}{{205}} = 0;\)   \(\frac{0}{{361}} = 0;\)          

\(\frac{0}{{408}} = 0;\)   \(\frac{0}{{1245}} = 0\)

b. Số 1 xem như là thương của số khác 0 chia cho chính số đó:

\(\frac{{17}}{{17}} = 1;\)         \(\frac{{35}}{{35}} = 1;\)           \(\frac{{184}}{{184}} = 1;\)    

\(\frac{{365}}{{365}} = 1;\)   \(\frac{{1256}}{{1256}} = 1\)

3. Kết luận

Qua bài học này, các em cần nắm được các nội dung sau:

  • Biết đọc, viết phân số
  • Biểu diễn phép chia số tự nhiên cho số tự nhiên khác 0 dưới dạng phân số
  • Biết viết số tự nhiên dưới dạng phân số.
Ngày:06/08/2020 Chia sẻ bởi:Denni Trần

CÓ THỂ BẠN QUAN TÂM