Giải bài tập SGK Toán 7 Bài 7: Tính chất đường trung trực của một đoạn thẳng

Phần hướng dẫn giải bài tập Bài Tính chất đường trung trực của một đoạn thẳng sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các giải bài tập từ SGK Toán 7. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SGK Toán 7 Bài 7: Tính chất đường trung trực của một đoạn thẳng

Giải bài tập SGK Toán 7 Bài 7: Tính chất đường trung trực của một đoạn thẳng

1. Giải bài 44 trang 76 SGK Toán 7

Gọi M là điểm nằm trên đường trung trực của đoạn thẳng AB, cho đoạn thẳng MA có độ dài 5cm. Hỏi độ dài MB bằng bao nhiêu?

Phương pháp giải

Áp dụng định lí 1 (định lí thuận): Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

Hướng dẫn giải

Điểm M thuộc đường trung trực của AB

MA=MB (định lí thuận)

MA=5cm nên MB=5cm.

2. Giải bài 45 trang 76 SGK  Toán 7

Chứng minh đường thẳng PQ được vẽ như hình 43 đúng là đường trung trực của đoạn thẳng MN.

Phương pháp giải

- Dựa vào cách vẽ.

- Áp dụng định lí 2 (định lí đảo): Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

Hướng dẫn giải

Theo cách vẽ thì hai cung tròn tâm MN có bán kính bằng nhau và cắt nhau tại P,Q 

Do đó PM=PNQM=QN

P,Q cách đều hai mút M,N của đoạn thẳng MN.

Áp dụng định lí 2 suy ra P,Q nằm trên đường trung trực của đoạn thẳng MN hay đường thẳng PQ là đường trung trực của đoạn thẳng MN (điều phải chứng minh).

3. Giải bài 46 trang 76 SGK Toán 7

Cho ba tam giác cân ABC,DBC,EBC có chung đáy BC. Chứng minh ba điểm A,D,E thẳng hàng.

Phương pháp giải

- Áp dụng tính chất của tam giác cân là tam giác cân có hai cạnh bên bằng nhau.

- Áp dụng định lí 2: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

- Chứng minh các điểm A, D, E cùng nằm trên đường trung trực của BC.

Hướng dẫn giải

ABC cân tại A nên AB=AC (định nghĩa tam giác cân)

A thuộc đường trung trực của BC (theo định lí 2)

DBC cân tại D nên DB=DC

D thuộc đường trung trực của BC (theo định lí 2)

EBC cân tại E nên EB=EC

E thuộc đường trung trực của BC (theo định lí 2)

Do đó A,D,E thuộc đường trung trực của BC.

Vậy A,D,E thẳng hàng.

4. Giải bài 47 trang 76 SGK Toán 7

Cho hai điểm M,N nằm trên đường trung trực của đoạn thẳng AB. Chứng minh AMN=BMN.

Phương pháp giải

Áp dụng định lí 1: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

Từ đó chứng minh AMN=BMN. thao trường hợp cạnh-cạnh-cạnh.

Hướng dẫn giải

M thuộc đường trung trực của AB nên MA=MB (Theo định lí 1)

N thuộc đường trung trực của AB nên NA=NB (Theo định lí 1)

Xét AMNBMN ta có:

MA=MB (chứng minh trên)

NA=NB (chứng minh trên)

MN chung

Vậy AMN=BMN (c.c.c) (điều phải chứng minh).

5. Giải bài 48 trang 77 SGK Toán 7

Hai điểm MN cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng xy.  Lấy điểm L đối xứng với M qua xy. Gọi I là một điểm của xy. Hãy so sánh IM+IN với LN.

Phương pháp giải

- Xét hai trường hợp I, L, N thẳng hàng và không thẳng hàng.

- Áp dụng định lí 2 (định lí đảo): Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

- Áp dụng bất đẳng thức tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kỳ luôn lớn hơn cạnh còn lại.

Hướng dẫn giải

Vì L và M đối xứng qua đường thẳng xy nên xy là đường thẳng đi qua trung điểm và vuông góc với ML.

Nên đường thẳng xy là trung trực của ML.

I ∈ xy ⇒ IM = IL (theo định lý 1).

Nên IM + IN = IL + IN

- TH1: Nếu I, L, N thẳng hàng

⇒ IL + IN = LN (vì N và L nằm khác phía so với đường thẳng xy và I nằm trên xy).

⇒ IM + IN = LN

- TH2: Nếu I không là giao điểm của LN và xy thì ba điểm I, L, N không thẳng hàng

Áp dụng bất đẳng thức tam giác vào Δ INL ta được: IL + IN > LN

mà IM = IL (cmt)

⇒ IL + IN > LN (bất đẳng thức tam giác)

⇒ IM + IN > LN

Vậy với mọi vị trí của I trên xy thì IM + IN ≥ LN

6. Giải bài 49 trang 77 SGK Toán 7

Hai nhà máy được xây dựng bên bờ một con sông tại hai địa điểm AB ở hình dưới. Hãy tìm cạnh bờ sông một địa điểm C để xây dựng một trạm bơm đưa nước về cho hai nhà máy sao cho độ dài đường ống dẫn nước là ngắn nhất?

Phương pháp giải

Áp dụng kết quả bài 48.

Hai điểm MN cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng xy.  Lấy điểm L đối xứng với M qua xy. Gọi I là một điểm của xy thì IM+INLN.

Hướng dẫn giải

Gọi đường thẳng xy là bờ sông cần xây trạm bơm.

⇒ Bài toán đưa về: Hai điểm A, B cố định cùng nằm trên nửa mặt phẳng bờ là đường thẳng xy. Tìm vị trí điểm C nằm trên đường xy sao cho CA + CB nhỏ nhất.

Gọi A’ là điểm đối xứng của A qua đường thẳng xy.

Theo như chứng minh ở bài 48 ta có: CA + CB = CA’ + CB ≥ A’B (A’B cố định).

⇒ CA + CB đạt ngắn nhất bằng A’B.

Dấu “=” xảy ra khi CA’+CB = A’B, tức là A’; B; C thẳng hàng hay C là giao điểm của A’B và xy.

Vậy điểm đặt trạm bơm là giao điểm của đường thẳng xy với đường thẳng A’B, trong đó A’ là điểm đối xứng với A qua xy.

7. Giải bài 50 trang 77 SGK Toán 7

Một con đường quốc lộ cách không xa hai điểm dân cư (h. 45). Hãy tìm bên đường đó một địa điểm để xây dựng một trạm y tế sao cho trạm y tế này cách đều hai điểm dân cư.

Phương pháp giải

- Áp dụng tính chất đường trung trực của đoạn thẳng: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

Hướng dẫn giải

Gọi A và B là hai điểm dân cư; C là điểm đặt trạm y tế; m là đường quốc lộ

Vì C cách đều AB nên C thuộc đường trung trực của AB

mà C ∈ d nên C là giao điểm của d và đường trung trực (d) của AB.

Gọi 2 điểm dân cư là hai điểm A, B. Để xây dựng trạm y tế ở bên đường cách đều hai điểm dân cư thì trạm y tế đó phải là giao điểm giữa con đường và đường trung trực của AB.

8. Giải bài 51 trang 77 SGK Toán 7

Cho đường thẳng d và điểm P không nằm trên d. Hình 46 minh họa cho cách dựng: đường thẳng đi qua điểm P và vuông góc với đường thẳng d bằng thước và compa như sau:

(1) Vẽ đường tròn tâm P với bán kính thích hợp sao cho nó có cắt d tại hai điểm AB

(2) Vẽ hai đường tròn với bán kính bằng nhau có tâm AB sao cho chúng cắt nhau. Gọi một giao điểm của chúng là C(CP).

(3) Vẽ đường thẳng PC

Em hãy chứng minh đường thẳng PC vuông góc với d.

Đố: Tìm thêm một cách dựng nữa (bằng thước và compa)

Phương pháp giải

Áp dụng định lí 2: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

Hướng dẫn giải

Câu a:

 

A,B nằm trên cung tròn có tâm P nên PA=PB.

Do đó P nằm trên đường trung trực của AB (Theo định lí 2

C là giao điểm của 2 cung có bán kính bằng nhau có tâm tại A và tại B nên CA=CB.

Do đó C nằm trên đường trung trực của AB (Theo định lí 2)

P;C đều nằm trên đường trung trực của AB.  

 Đường thẳng CP là đường trung trực của AB 

Do đó: PCd

Câu b:

Một cách vẽ khác

- Lấy hai điểm A,B bất kì trên d.

- Vẽ cung tròn tâm A bán kính AP, cung tròn tâm B bán kính BP. Hai cung tròn cắt nhau tại C (C khác P).

- Vẽ đường thẳng PC. Khi đó PC là đường đi qua P và vuông góc với d.

Chứng minh:

PA=CA (vì P,C cùng thuộc cung tròn tâm A bán kính PA)

A thuộc đường trung trực của PC (Theo định lí 2) 

PB=CB (vì P,C cùng thuộc cung tròn tâm B bán kính PB)

B thuộc đường trung trực của PC (Theo định lí 2)

AB là đường trung trực của PC

PCAB hay PCd.

Ngày:25/08/2020 Chia sẻ bởi:Denni

CÓ THỂ BẠN QUAN TÂM