Giải bài tập SBT Toán 12 Bài 3: Phép chia số phức

Để giúp các em học sinh lớp 12 học tập thật tốt môn Toán, eLib xin giới thiệu nội dung giải bài tập bài Phép chia số phức SBT trang 204 bên dưới đây. Tài liệu gồm tất cả các bài tập có phương pháp và hướng dẫn giải chi tiết, rõ ràng, sẽ giúp các em ôn tập lại kiến thức, cũng cố kĩ năng làm bài hiệu quả. Mời các em cùng tham khảo.

Giải bài tập SBT Toán 12 Bài 3: Phép chia số phức

1. Giải bài 4.19 trang 204 SBT Giải tích 12

Thực hiện các phép tính sau :
\(\begin{align} & a)\,\dfrac{\left( 2+i \right)+\left( 1+i \right)\left( 4-3i \right)}{3+2i}; \\ & b)\dfrac{\left( 3-4i \right)\left( 1+2i \right)}{1-2i}+4-3i \\ \end{align} \)

Phương pháp giải

Áp dụng công thức: \(\dfrac{a+bi}{c+di}=\dfrac{\left( a+bi \right)\left( c-di \right)}{{{c}^{2}}+{{d}^{2}}} \)

Hướng dẫn giải

\(\begin{aligned} & a)\,\dfrac{\left( 2+i \right)+\left( 1+i \right)\left( 4-3i \right)}{3+2i} \\ & =\dfrac{2+i+7+i}{3+2i} \\ & =\dfrac{9+2i}{3+2i} \\ & =\dfrac{\left( 9+2i \right)\left( 3-2i \right)}{9+4} \\ & =\dfrac{31-12i}{13}=\dfrac{31}{13}-\dfrac{12}{13}i; \\ & b)\dfrac{\left( 3-4i \right)\left( 1+2i \right)}{1-2i}+4-3i \\ & =\dfrac{11+2i}{1-2i}+4-3i \\ & =\dfrac{\left( 11+2i \right)\left( 1+2i \right)}{1+4}+4-3i \\ & =\dfrac{7+24i}{5}+4-3i \\ & =\dfrac{27}{5}+\dfrac{9}{5}i \\ \end{aligned} \)

2. Giải bài 4.20 trang 204 SBT Giải tích 12

Giải các phương trình sau trên tập số phức :
\(\begin{align} & a)\left( 3+4i \right)x=\left( 1+2i \right)\left( 4+i \right) \\ & b)2ix+3=5x+4i \\ & c)\,3x\left( 2-i \right)+1=2ix\left( 1+i \right)+3i \\ \end{align} \)

Phương pháp giải

Biến đổi tương đương phương trình, áp dụng các quy tắc cộng, trừ, nhân và chia số phức.

Hướng dẫn giải

\(\begin{aligned} & a)\,\left( 3+4i \right)x=\left( 1+2i \right)\left( 4+i \right) \\ & \Leftrightarrow \left( 3+4i \right)x=2+9i \\ & \Leftrightarrow x=\dfrac{2+9i}{3+4i} \\ & \Leftrightarrow x=\dfrac{\left( 2+9i \right)\left( 3-4i \right)}{25} \\ & \Leftrightarrow x=\dfrac{42}{25}+\dfrac{19}{25}i \\ \end{aligned} \\ \begin{aligned} & b)\,2ix+3=5x+4i \\ & \Leftrightarrow \left( 5-2i \right)x=3-4i \\ & \Leftrightarrow x=\dfrac{3-4i}{5-2i}=\dfrac{\left( 3-4i \right)\left( 5+2i \right)}{25+4} \\ & \Leftrightarrow x=\dfrac{23}{29}-\dfrac{14}{29}i \\ \end{aligned} \\ \begin{aligned} & c)3x\left( 2-i \right)+1=2ix\left( 1+i \right)+3i \\ & \Leftrightarrow \left[ 3\left( 2-i \right)-2i\left( 1+i \right) \right]x=-1+3i \\ & \Leftrightarrow \left( 8-5i \right)x=-1+3i \\ & \Leftrightarrow x=\dfrac{-1+3i}{7-5i}=\dfrac{-23}{89}+\dfrac{19}{89}i \\ \end{aligned} \)

3. Giải bài 4.21 trang 204 SBT Giải tích 12

Tìm nghịch đảo của số phức sau

\(\begin{align} & a)\,\sqrt{2}-i\sqrt{3} \\ & b)i \\ & c)\,\dfrac{1+i\sqrt{5}}{3-2i} \\ & d){{\left( 3+i\sqrt{2} \right)}^{2}} \\ \end{align} \)

Phương pháp giải

Tìm số phức nghịch đảo \(\dfrac{1}{z}\) bằng cách nhân với số phức liên hợp và rút gọn.

Hướng dẫn giải

\(\begin{aligned} & a)\dfrac{1}{\sqrt{2}-i\sqrt{3}}=\dfrac{\sqrt{2}+i\sqrt{3}}{2+3}=\dfrac{\sqrt{2}}{5}+\dfrac{\sqrt{3}}{5}i \\ & b)\dfrac{1}{i}=-i \\ & c)\dfrac{3-2i}{1+i\sqrt{5}}=\dfrac{\left( 3-2i \right)\left( 1-i\sqrt{5} \right)}{1+5}=\dfrac{3-2\sqrt{5}}{6}-\dfrac{3\sqrt{5}+2}{6}i \\ & d)\dfrac{1}{{{\left( 3+i\sqrt{2} \right)}^{2}}}=\dfrac{1}{7+6i\sqrt{2}}=\dfrac{7-6i\sqrt{2}}{121}=\dfrac{7}{121}-\dfrac{6\sqrt{2}}{121}i \\ \end{aligned}\)

4. Giải bài 4.22 trang 204 SBT Giải tích 12

Giải phương trình sau trên tập số phức \(\left( 1-i \right)z+\left( 2-i \right)=4-5i \)

Phương pháp giải

Biến đổi chuyển vế, đổi dấu và thực hiện các phép toán cộng, trừ, chia số phức.

Hướng dẫn giải

\(\begin{aligned} & \left( 1-i \right)z+\left( 2-i \right)=4-5i \\ & \Leftrightarrow \left( 1-i \right)z=2-4i \\ & \Leftrightarrow z=\dfrac{2-4i}{1-i} \\ & \Leftrightarrow z=\dfrac{\left( 2-4i \right)\left( 1+i \right)}{2}=3-i \\ \end{aligned}\)

5. Giải bài 4.23 trang 204 SBT Giải tích 12

Tìm các số phức \(2z+\overline{z} \) và \(\dfrac{25i}{z}\)  biết rằng \(\dfrac{25i}{z}\)

Phương pháp giải

Tìm số phức liên hợp \(\overline z = a - bi\), thực hiện các phép tính cộng, trừ, nhân, chia số phức.

Hướng dẫn giải

\(z=3-4i\Rightarrow \overline{z}=3+4i \\ \begin{aligned} & 2z+\overline{z}=2\left( 3-4i \right)+\left( 3+4i \right)=9-4i \\ & \dfrac{25i}{z}=\dfrac{25i}{3-4i}=\dfrac{25i\left( 3+4i \right)}{25}=-4+3i \\ \end{aligned}\)

6. Giải bài 4.24 trang 204 SBT Giải tích 12

Cho \(z\in \mathbb{C}\) . Mệnh đề nào sau đây sai?
\(\begin{align} & A.\,\dfrac{1}{z}\in \mathbb{R}\Leftrightarrow z\in \mathbb{R} \\ & B.\,\dfrac{1}{z}\,\,\text{thuần ảo}\Leftrightarrow \,\text{z}\,\text{thuần ảo} \\ & C.\dfrac{1}{z}=\overline{z}\Leftrightarrow \left| z \right|=1 \\ & D.\left| \dfrac{1}{z} \right|=\left| z \right|\Leftrightarrow z\in \mathbb{R} \\ \end{align}\)

Phương pháp giải

Đặt z = a + bi và kiểm tra tính đúng sai của từng đáp án.

Hướng dẫn giải

\(z=a+bi,\,\,\,a,b\in \mathbb{R} \)
A. \(\dfrac{1}{z}=\dfrac{a-bi}{{{a}^{2}}+{{b}^{2}}}\in \mathbb{R}\Rightarrow b=0\Leftrightarrow z\in \mathbb{R} \). A đúng
B. \(\dfrac{1}{z}=\dfrac{a-bi}{{{a}^{2}}+{{b}^{2}}} \) thuần ảo. Suy ra \(a=0\)\(z\) thuần ảo. B đúng
C. \(\dfrac{1}{z}=\dfrac{a-bi}{{{a}^{2}}+{{b}^{2}}}=a-bi\Leftrightarrow {{a}^{2}}+{{b}^{2}}=1\Leftrightarrow \left| z \right|=1\) . C đúng
D. \(\left| \dfrac{1}{z} \right|=\left| \dfrac{a-bi}{{{a}^{2}}+{{b}^{2}}} \right|=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}}=\sqrt{{{a}^{2}}+{{b}^{2}}}\Leftrightarrow \sqrt{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}=1\) D. sai

Chọn D

7. Giải bài 4.25 trang 204 SBT Giải tích 12

Cho \(z=a+bi\in \mathbb{C}\), biết \(\dfrac{z}{\overline{z}} \in \mathbb R\). Kết luận nào sau đây đúng?
\(\begin{align} & A.a=0 \\ & B.b=0 \\ & C.a=b \\ & D.ab=0 \\ \end{align} \)

Phương pháp giải

Tính \(\overline z\)\(\dfrac{z}{{\overline z }}\) rồi sử dụng lý thuyết số phức \(x + yi \in \mathbb{R} \Leftrightarrow y = 0\)

Hướng dẫn giải

\(\dfrac{z}{\overline{z}}=\dfrac{a+bi}{a-bi}=\dfrac{\left( a+bi \right)\left( a+bi \right)}{{{a}^{2}}+{{b}^{2}}}=\dfrac{{{a}^{2}}-{{b}^{2}}+2abi}{{{a}^{2}}+{{b}^{2}}} \in \mathbb R\)
Suy ra \(ab=0\)
Chọn D.

8. Giải bài 4.26 trang 204 SBT Giải tích 12

Cho \(z=a+bi\in \mathbb{C}\), biết \( \dfrac{z}{\overline{z}}\) là một số thuần ảo. Kết luận nào sau đây đúng?
\(\begin{align} & A.a=0 \\ & B.b=0 \\ & C.a=b \\ & D.a=b\,\text{hoặc}\,a=-b \\ \end{align} \)

Phương pháp giải

Tính \(\overline z \)\(\dfrac{z}{{\overline z }}\) rồi sử dụng lý thuyết số phức x + yi là số thuần ảo nếu x = 0.

Hướng dẫn giải

\(\dfrac{z}{\overline{z}}=\dfrac{a+bi}{a-bi}=\dfrac{\left( a+bi \right)\left( a+bi \right)}{{{a}^{2}}+{{b}^{2}}}=\dfrac{{{a}^{2}}-{{b}^{2}}+2abi}{{{a}^{2}}+{{b}^{2}}} \) là số thuần ảo
Suy ra \({{a}^{2}}-{{b}^{2}}=0\Leftrightarrow a=\pm b \)
Chọn D.

Các em hãy luyện tập bài trắc nghiệm Phép chia số phức Toán 12 sau để nắm rõ thêm kiến thức bài học.

Trắc Nghiệm

Ngày:26/10/2020 Chia sẻ bởi:Phuong

CÓ THỂ BẠN QUAN TÂM